Effects of nitrous acid treatment on the survival and mutagenesis of Escherichia coli cells lacking base excision repair (hypoxanthine-DNA glycosylase-ALK A protein) and/or nucleotide excision repair.

نویسندگان

  • O Sidorkina
  • M Saparbaev
  • J Laval
چکیده

Deoxyinosine occurs in DNA by spontaneous deamination of adenine or by incorporation of dITP during replication. Hypoxanthine residues (HX) are mutagenic and give rise to A-T-->G-C transition. They are substrates for the Escherichia coli product of the alkA gene, the 3-methyl-adenine-DNA glycosylase II (ALK A protein). In mammalian cells and in yeast, HX is excised by the counterpart of ALK A protein, the ANPG or the MAG proteins respectively. We have investigated in vivo the contribution of the alkA gene to counteract the lethal and/or mutagenic effects of HX residues induced by nitrous acid treatment. Using an E.coli strain allowing the detection of A-T-->G-C transition, we show that the alkA mutant has a slightly increased spontaneous rate of mutation and about the same sensitivity when treated with HNO2 as compared with the wild-type strain. Using the E.coli alkA mutant carrying a multicopy plasmid expressing the ALK A protein or the ANPG protein, we barely observe any effect of HNO2 treatment on sensitivity and mutation rate of the bacteria. In contrast, the same experiment performed with a uvrA- strain, deficient in nucleotide excision repair (NER), shows that this mutant is extremely sensitive to HNO2 treatment. Furthermore, the sensitivity and the spontaneous mutation rate observed in the double mutant alkA- uvrA- are almost identical to those of the uvrA- mutant. Hence, NER has the major role in vivo for the repair of lethal and mutagenic lesions induced by HNO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinational repair is critical for survival of Escherichia coli exposed to nitric oxide.

Nitric oxide (NO(.)) is critical to numerous biological processes, including signal transduction and macrophage-mediated immunity. In this study, we have explored the biological effects of NO(.)-induced DNA damage on Escherichia coli. The relative importance of base excision repair, nucleotide excision repair (NER), and recombinational repair in preventing NO(.)-induced toxicity was determined....

متن کامل

Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V.

Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond 3' to the lesion. We have identified ...

متن کامل

Stimulation of DNA Glycosylase Activities by XPC Protein Complex: Roles of Protein-Protein Interactions

We showed that XPC complex, which is a DNA damage detector for nucleotide excision repair, stimulates activity of thymine DNA glycosylase (TDG) that initiates base excision repair. XPC appeared to facilitate the enzymatic turnover of TDG by promoting displacement from its own product abasic site, although the precise mechanism underlying this stimulation has not been clarified. Here we show tha...

متن کامل

Isolation and characterization of HC1: a novel human DNA repair gene.

Nucleotide excision repair (NER) acts on a broad spectrum of large lesions, while base excision repair removes individual modified bases. Although both processes have been well studied in human cells, novel genes involved in these DNA repair pathways have been described. Using a heterologous complementation approach, we identified a fetal human cDNA that complemented two Escherichia coli mutant...

متن کامل

Hypoxanthine incorporation is nonmutagenic in Escherichia coli.

Endonuclease V, encoded by the nfi gene, initiates removal of the base analogs hypoxanthine and xanthine from DNA, acting to prevent mutagenesis from purine base deamination within the DNA. On the other hand, the RdgB nucleotide hydrolase in Escherichia coli is proposed to prevent hypoxanthine and xanthine incorporation into DNA by intercepting the noncanonical DNA precursors dITP and dXTP. Bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mutagenesis

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 1997